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Summary
The commonly used Wald-type confidence intervals are based on the approximately
normal distribution of parameter estimates valid in many “nice” estimation settings.
However, one may come across “difficult” situations where the procedure works
poorly or breaks down. In this paper, we review an alternative method based on the
likelihood function, illustrating by 2 examples its use and the computations involved.

Introduction
The standard procedure for computing a confidence interval (CI) for a parameter in a
statistical model is by the formula: estimate ± percentile × SE(estimate), where SE is
the standard error. The percentile is selected according to a desired confidence level
of the interval and a reference distribution (a t-distribution for regression coefficients
in a linear model, otherwise a standard normal distribution). This procedure is com-
monly referred to as a Wald-type CI. It may work poorly if the distribution of the pa-
rameter estimate is markedly skewed or if the (estimated) standard error is useless. A
common example of the latter occurs when a regression coefficient in logistic regres-
sion corresponds to comparison of 2 categories of which one has either all outcomes
negative or all outcomes positive. Examples of the former are variance-covariance
parameters in mixed models 1 or estimates close to a boundary in their range, e.g. for
estimation of the correlation (covariance) between 2 diagnostic tests 2 or maximum-
likelihood estimation of test characteristics in absence of a gold standard 3.

Besides the ability to recognise when Wald-type CIs fail, the applied researcher is
in need of an alternative method. The profile likelihood (or likelihood or likelihood-
ratio) method 4 is applicable to all likelihood-based statistical analyses and is gener-
ally less sensitive to the difficulties described above.

Profile likelihood method
The idea is to invert a likelihood-ratio test to obtain a CI for the parameter in ques-
tion. Consider a statistical model with parameters � and � where � is the parameter of
interest and � is the (vector of) additional parameter(s) in the model. Denote by
L(�,�) the likelihood function, and by (�*,�*) the maximum likelihood (ML) esti-
mates. The likelihood ratio test statistic (G2) of the hypothesis H0: �=�0 (where �0 is a
fixed value) equals the drop in 2lnL between the “full” model and the reduced model
with � fixed at �0, i.e. G2=2(lnL(�*,�*)�lnL(�0,�0*)), where �0* is the ML estimate
of the reduced model. Alternatively, we may express the test statistic in terms of the
profile likelihood function L1 for the parameter � which is obtained from the usual
likelihood function by maximizing over the parameter �, i.e. L1(�)=max� L(�,�).
Then we have G2=2(lnL1(�*)�lnL1(�0)). A 95% CI for � consists of those values of



�0 for which the test is non-significant at significance level 0.05; this is the case when
G2 does not exceed 3.84 (95%-percentile of the �2(1) distribution). Thus, the CI
consists of the �0-values for which lnL1(�0)�lnL1(�*)�3.84/2=lnL(�*,�*)�1.92. For a
CI with coverage (1��)*100%, use instead the (1��)-percentile of the �2(1) distribu-
tion. Figure 1 depicts the profile likelihood CI graphically for the data of Example 1.

Figure 1. Profile likelihood function and 95% CI: (�L,�U) for the data in Example 1.

Computation of a profile likelihood CI
For standard analyses, such as logistic regression, it is available as an option in some
statistical packages (e.g., SAS (“logistic” and “genmod” procedures) and Stata
(“logprof” command)). Also, some packages offer profile likelihood CIs in more gen-
eral frameworks (e.g., SAS (“model” procedure) and R (“plkhci” function)). The lat-
ter is based on a general algorithm 4 which can be implemented in any programming
environment with built-in routines for maximization. It is also possible to extend the
EM algorithm to provide profile likelihood intervals5. However, we out-line a simpler
approach which in many situations will be relatively easy to use or implement.

For simplicity, we consider only the lower bound of the CI (the upper bound is
similar) and assume the profile likelihood function to be an increasing function to the
left of its maximum. As a start, compute the ML estimates (�*,�*) and the corre-
sponding log-likelihood value. Then proceed by the following steps:
1. Compute a “reasonable” lower bound �' for the lower confidence limit (e.g.,

�*�5SE(�*), or 0.0001 if �-values are restricted to be >0),
2. Define a grid of values ranging from �' to �* (e.g., 100 equidistant points),
3. For each grid value �i, compute the profile log-likelihood value lnL1(�i) by max-

imizing the lnL(�i,�) over �-values (a standard analysis allowing � to be fixed at
�i may apply),

4. Take as the lower bound (�L) of the 95% CI the smallest �i-value for which it
holds that lnL1(�i)�lnL(�*,�*)�1.92,

5. If necessary, refine or extend the grid of values around �L to obtain greater
accuracy.

For repeated computations one may replace the crude search over a grid of values by
a systematic search procedure (e.g. bisection of the interval from �' to �*).



Example 1: Covariance (correlation) between two diagnostic tests
Results of diagnostic tests may be correlated (dependent) even for true positive sam-
ples, intuitively so if they target related quantities or operate in similar ways, and the
direct way of expressing such (conditional) dependence between tests with dicho-
tomous outcomes is by the covariance between tests results in a population of true
positives 2. We focus here on the dependence among positives, the sensitivity covari-
ance; correlation among true negatives can be treated similarly. From the 2x2-table of
probabilities of test results (p11, p10, p01, p00), where e.g. p10 is the probability of test-
ing positive on the first test and negative on the second test, the covariance is com-
puted as �=p11�Se1Se2 ; the sensitivities are Se1=p11+p10 and Se2=p11+p01. These for-
mulae apply also to observed proportions from a table (n11, n10, n01, n00) of counts and
give in this case the ML parameter estimates. A profile likelihood CI for � can be
computed by the procedure outlined above; the log-likelihood function is given by:

lnL=n11ln[Se1Se2+�]+n10ln[Se1(1�Se2)��]+n01ln[(1�Se1)Se2��]+n00ln[(1�Se1)(1�Se2)+�]
Due to the inherent restrictions on the parameters (cell probabilities are between 0
and 1), the maximization of lnL for fixed � involves non-linear constraints 2. As a
data example, from observed counts (26,0,11,9) we compute Se1=26/46=0.565,
Se2=37/46=0.804, and �=26/46-0.565*0.804=0.111. Fig. 1 shows the profile log-like-
lihood function with its maximal value of �45.25, and the 95% CI for �:(0.061,0.164)
comprising the values of � where the function exceeds �45.25�1.92=�47.17.

Example 2: EC50 (effective concentration; to obtain reaction in 50% of a
population) in a dose-response relation with natural responsiveness
In a study of the sensitivity of sea lice from farms of Atlantic salmon to chemothera-
peutants, a probit regression model with natural responsiveness was used for the
number of affected (moribond or dead) sea lice in bioassays involving different doses
of the agent. The modelling equation for the probability of sea lice being affected was
probit(p)=p0+(1�p0)(�+�dose), and the EC50 is computed as ��/�. Inference about
EC50 is potentially difficult, and several methods exist for computing a CI 6. The
rewriting �+�dose=�(dose�EC50) shows that the profile likelihood equals the usual
likelihood for a model with no intercept and the dose centered by the EC50. Therefore,
step 3 in the algorithm above could be carried out by a standard routine for probit
regression. As a numerical illustration, for the control group and doses given as the
natural logarithms of (1,3,10,30,100,300), the number of affected lice were: (2/24,
1/22,2/21,4/21,1/17,9/18,27/27). The estimated natural responsiveness was p0*=0.095
(SE=0.029), and the intercept and slope were �*=�29.56 and �*=6.391, respectively,
with huge and useless Ses. Further, EC50=4.625 on logarithmic scale and e4.625=102
on original scale. The 95% profile likelihood CI (on original scale) was (79.7,133.7).
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